Multivariate statistics applications in phase analysis of STEM-EDS spectrum images.
نویسندگان
چکیده
Spectrum imaging (SI) methods are displacing traditional spot analyses as the predominant paradigm for spectroscopic analysis with electron beam instrumentation. The multivariate nature of SI provides clear advantages for qualitative analysis of multiphase specimens relative to traditional gray-scale images acquired with non-spectroscopic signals, where different phases with similar average atomic number may exhibit the same intensity. However, with the improvement in qualitative analysis with the SI paradigm has come a decline in the quantitative analysis of the phases thus identified, since the spectra from individual pixels typically have insufficient counting statistics for proper quantification. The present paper outlines a methodology for quantitative analysis within the spectral imaging paradigm, which is illustrated through X-ray energy-dispersive spectroscopy (EDS) of a multiphase (Pb,La)(Zr,Ti)O(3) ceramic in scanning transmission electron microscopy (STEM). Statistical analysis of STEM-EDS SI is shown to identify the number of distinct phases in the analyzed specimen and to provide better segmentation than the STEM high-angle annular dark-field (HAADF) signal. Representative spectra for the identified phases are extracted from the segmented images with and without exclusion of pixels that exhibit spectral contributions from multiple phases, and subsequently quantified using Cliff-Lorimer sensitivity factors. The phase compositions extracted with the method while excluding pixels from multiple phases are found to be in good agreement with those extracted from user-selected regions of interest, while providing improved confidence intervals. Without exclusion of multiphase pixels, the extracted composition is found to be in poor statistical agreement with the other results because of systematic errors arising from the cross-phase spectral contamination. The proposed method allows quantification to be performed in the presence of discontinuous phase distributions and overlapping phases, challenges that are typical of many nanoscale analyses performed by STEM-EDS.
منابع مشابه
Effect of Nitric acid on Particle Morphology of the Nano-TiO2
Nano-sized titanium dioxide TiO2 powder was prepared by new wet chemical route from its precursor Titanium (IV) chloride (TiCl4) as precursor with isopropoxy alcohol in presence of nitric acid under ambient condition. Their morphologies, phase compositions and components of the TiO2 nanoparticles were characterized by transmission electron ...
متن کاملFabrication and Characterization of Rutile TiO2 Nanocrystals by Water Soluble Precursor
In this research, TiO2 nanoparticles were synthesized by a simple wet chemical method. TiCl4 was used as precursor in hydrogen peroxideand ethanol. The TiO2 nanoparticles were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), electron dispersive spectroscopy (EDS) and UV-Vis spectrophotome...
متن کاملPhase II monitoring of multivariate simple linear profiles with estimated parameters
In some applications of statistical process monitoring, a quality characteristic can be characterized by linear regression relationships between several response variables and one explanatory variable, which is referred to as a “multivariate simple linear profile.” It is usually assumed that the process parameters are known in Phase II. However, in most applications, this assumption is viola...
متن کاملCo-precipitation Synthesis of Zinc Oxide (ZnO) Nanoparticles by Zinc Nitrate Precursor
Nanostructured zinc oxide (ZnO) materials have received considerable interest from scientists due to their remarkable performance in electronics, optics and photonics. ZnO nanoparticles were synthesized by co-precipitation method. ZnO nanoparticles were synthesized using Zn(NO3)3 and K2CO3 precursors. The structure of the obtained product was confirmed by the powder X-ray diffraction (XRD) anal...
متن کاملReview of recent advances in spectrum imaging and its extension to reciprocal space.
Using examples from various domains of science, this review covers some recent developments in spectrum imaging (SI) using scanning transmission electron microscopy (STEM) and electron energy loss spectroscopy (EELS). Advanced multi-dimensional acquisition methods allow the acquisition of STEM-EELS data with other complementary data such as energy dispersive X-ray spectroscopy (EDS), cathodolum...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Ultramicroscopy
دوره 110 2 شماره
صفحات -
تاریخ انتشار 2010